

### FACULTY OF NURSING, PHARMACY AND HEALTH PROFESSIONS

Pathophysiology for Pharm D 1<sup>st</sup> Sem. 2018/2019 Date 10/12/2018 Instructor: Dr. Wail Hammoudeh, FACP

Course # PHARM 35

#### 1) Name the differences Between Extracellular (ECF) and Intracellular (ICF),

- $\succ$  The body fluids volume is 60% of body weight.
- > ICF = 40%.
- ► ECF = 20%:
  - 80% of ECF is interstitial Fluid (the fluid between cells in tissues)20% of ECF is blood plasma.
- > ECF = large amounts of *sodium*, *chloride*, *calcium* and *bicarbonate* ions.
- > ICF = large amounts of *potassium*, *magnesium*, and *phosphate ions*

#### 2) Describe the free radicals & their mechanism of action of in cellular injury

- Free radicals (ROS) are generated as *by-products of normal cell metabolism*
- > Free radicals have <u>one or more unpaired electrons</u> in their outer shell.
- Exogenous sources include tobacco smoke, organic solvents, pollutants, radiation, bacterial infections and pesticides.
- Examples of free radicals include <u>Superoxide (O2-)</u>, <u>hydroxyl radicals (OH-)</u>, <u>hydrogen peroxide(H2O2)</u> and <u>Hydroperoxyl radicals</u>
- Free radicals are inactivated by <u>antioxidant enzymes</u> within the body such as <u>catalase</u>, <u>glutathione peroxidase (Gpx) and superoxide dismutase (SOD)</u>.
- > Free radicals can injure cells through:
  - <u>Peroxidation of membrane lipids</u> (free radicals "steal" electrons from the lipids in cell membranes, resulting in cell damage)
  - o Damage of cellular proteins
  - o <u>Mutation of cellular DNA</u>

### **3)** Describe the cell cycle.

- > The *cell cycle is a repeating series of events* that cells go through.
- It includes growth, DNA synthesis, and cell division.
- > There are two growth phases (G1 & G2), and cell division includes *mitosis*.
- The cell cycle is *controlled by regulatory proteins* at three key checkpoints (G1, G2 & M) in the cycle.
- > These checkpoints signal the cell to either start or delay the next phase of the cycle.
- Cancer is a disease that occurs when the cell cycle is no longer regulated. Cancer cells grow rapidly and may form a mass of abnormal cells called a *tumor*.

### 4) Describe the Growth regulatory genes & "Drivers" of Cancer.

- The <u>genetic changes</u> that contribute to cancer tend to affect three main types of genes that involved in <u>regulation of cell proliferation & growth</u>; proto-oncogenes, tumor suppressor genes and DNA repair genes.
- > These *changes "mutations"* are sometimes called *"drivers" of cancer*.
  - **Proto-oncogenes** are involved in *normal cell growth and division*. When mutated they may become <u>cancer-causing genes (or oncogenes)</u>, allowing cells to grow and survive when they should not.
  - Tumor suppressor genes restrain (تقيد) cell growth and division; loss of function results in <u>unregulated growth and may divide in an uncontrolled</u> <u>manner.</u>
  - **DNA repair genes** are involved in *fixing damaged DNA*. DNA repair genes when *mutated*, *become faulty* and tend to develop additional mutations in other genes.
- Together, these altered, or "mutated," Genes may cause the cells to become cancerous.

### 5) Describe the role of the adenomatous polyps in colorectal cancers.

- > There are 2 types of polyps:
  - Sessile: Base is attached to the wall
  - o Pedunculated: Mucosal stalk from polyp to wall
- Between 70 and 90 % of colorectal cancers arise from *adenomatous polyps* (Adenomas), and 10 to 30 % arise from *sessile adenomas*.
- > The larger the polyp, the greater the potential for malignancy.
- > Diminutive polyps (5 mm or less in diameter) have a *negligible malignant potential*.
- Polyps with a diameter of 5 to 10 mm are considered small, whereas polyps greater than 10 mm in diameter are considered large.
- Polyps larger than 2 cm in diameter have a 50 percent chance of becoming malignant over time.
- > If polyps are not removed, they continue to grow and can become cancerous.

# 6) Describe the Blood coagulation

- Blood coagulation is the process in which *fibrin* protein strands wrap around (يلتف حول) the platelet plug to form an insoluble clot.
- The process of blood coagulation occurs through two separate, but related pathways called :
  - > The *intrinsic coagulation pathway* and
  - > The *extrinsic coagulation pathway*
- Intrinsic coagulation pathway:
  - > Initiated by protein factors *found circulating in the blood*.

- Activation of initial clotting factor XII (Hageman factor) occurs after Vessel Injury through contact with exposed collagen or damaged endothelium
- Extrinsic coagulation pathway:
  - > Initiated by protein factors *located in the tissues*.
  - Activation of extrinsic pathway occurs when factor III (thromboplastin) is released from tissues to activate clotting factor VII.
- 7) Name the risk factors for Breast cancer in women



Obesity is associated with a *twofold increase* in the risk of breast cancer in *postmenopausal women* whereas among *premenopausal women* it is associated with a *reduced incidence*.

# 8) Describe the Natural inhibitors (Anticoagulants)

- > Antithrombin III inhibits factor X and thrombin
- Heparin from basophils and mast cells potentiates effects of antithrombin III (together they inhibit IX, X, XI, XII and thrombin)
- > Antithromboplastin (inhibits ,,tissue factors" tissue thromboplastins)
- ▶ Protein C and S activated by thrombin; degrade factor Va and VIIIa

### 9) Describe the process of Erythropoiesis.

- > Erythropoiesis is the part of hematopoiesis that deals with the *production of RBCs*.
- A major regulator of <u>red blood cell</u> production is the hormone erythropoietin (Epo) which is a glycoprotein.
- The major site of Epo production is the <u>kidney</u>, while the <u>liver</u> is the main extrarenal site of Epo production.
- Epo secretion is stimulated by hypoxia (O2 deficiency), which is detected by an oxygen sensor located in the kidney.
- The erythropoietin that is produced acts directly on stem cells in the bone marrow to promote the proliferation, maturation and release of *immature red cells* (Reticulocytes)

# 10) Define and describe the manifestations of Polycythemia

- > Polycythemia = number of <u>*RBC* in circulation</u> is greatly <u>increased</u>.
- Manifestations
  - o Increased blood volume and viscosity
  - Increased risk of thrombus
  - o Occlusion of small blood vessels
  - Hepatosplenomegaly from pooling of blood
  - o Impaired blood flow to tissues (ischemia)
  - o Headache, Dizziness, Weakness, Increased blood pressure, Itching / sweating

# 11) Describe the pathophysiology of leukemia

- The pathophysiology of leukemia isn't completely understood, but like other types of cancer; it is due to the **mutation in the DNA** of the *Hematopoietic stem cells (HSCs)* of the bone marrow.
- Once a mutation in DNA occurs that can't be repaired, the *abnormal or immature* form white blood cells can freely replicate and become essentially "immortal".
- > These abnormal white blood cells **no longer function normally**.
- Over time, these leukemic cells *multiply* and *crowd out* (تزاحم) the normal cells of the bone marrow that do function properly. *This increases the risk of infections* one of the most common causes of death in people with leukemia.
- This overabundance of abnormal white blood cells also *reduces the number of red blood cells and platelets*, leading to anemia and bleeding problems.
- The abnormal and immature (blast) Leukemic cells *spill out* into the blood and invade other tissues such as the *spleen*, *liver*, *lymph nodes and bone* and cause tissue destruction.

### 12) Describe shortly the 4 types of leukemia.

- > ALL most common type of <u>childhood leukemia (80%)</u>
- AML is the most common <u>adult leukemia</u>. Auer rods seen in the leukemic blasts of AML.
- CLL is caused by an *abnormal proliferation* of lymphocytes. Hypogammaglobulinemia occurs in > 50% of patients. Low <u>IgM</u> (patients are predisposed to infections).
- CML is a proliferation of *primitive hematopoietic stem cells*(hypercellular).
   <u>Philadelphia chromosome</u> (Chromosome 22 containing the fused BCR-ABL gene) leads to the production of an abnormal protein with tyrosine kinase activity <u>causing</u> proliferation of the myeloid mass, which leads to CML,

### **13)** Describe the types of Immunity

| Innate or Natural or Nonspecific Immunity                                                               |                                                                                                                             | Adaptive or Acquired or Specific                    |
|---------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|
|                                                                                                         |                                                                                                                             |                                                     |
| NONSPECIFIC DEFENSE MECHANISMS                                                                          |                                                                                                                             | SPECIFIC DEFENSE MECHANISMS<br>(IMMUNE SYSTEM)      |
| First line of defense                                                                                   | Second line of defense                                                                                                      | Third line of defense                               |
| <ul> <li>Skin</li> <li>Mucous membranes</li> <li>Secretions of skin and<br/>mucous membranes</li> </ul> | <ul> <li>Phagocytic white<br/>blood cells</li> <li>Antimicrobial proteins</li> <li>The inflammatory<br/>response</li> </ul> | <ul> <li>Lymphocytes</li> <li>Antibodies</li> </ul> |

### 14) Describe the Cells of the Immune System

- The myeloid progenitors develop into the cells that respond early and nonspecifically to infection.
  - > Monocytes turn into Macrophages *in body tissues* and gobble up foreign invaders.
  - > Neutrophils engulf bacteria upon contact and send out warning signals.
  - Granule-containing cells such as eosinophils <u>attack parasites</u>, while basophils release granules containing histamine and other allergy-related molecules.
- **&** Lymphoid precursors develop into lymphocytes.
  - Lymphocytes <u>respond later in infection</u>. They mount a more specifically tailored attack after <u>antigen-presenting cells</u> such as dendritic cells or macrophages, display their catch in the form of antigen fragments.

- The B cell turns into a plasma cell that produces and releases into the bloodstream <u>thousands of specific</u> antibodies. Antibodies attach to a specific antigen and make it easier for the immune cells to destroy the antigen.
- The T cells attack antigens directly and help control the immune response. They also release chemicals, known as cytokines, which control the entire immune response.

# 15) Describe Hodgkin's Lymphoma.

- Hodgkin lymphoma is a malignant proliferation of <u>B-cell lymphocyte</u>, that begins in a single node or group of nodes and <u>then spread to contiguous</u> (the next in sequence) lymph node, (rarely skipping areas-which is more common- in NHL).
- Involvement of retroperitoneal lymph nodes, spleen, liver, and bone marrow occurs after the lymphoma becomes generalized.
- It is characterized by the presence of of <u>Reed-Sternberg cells (RS)</u> in lymph nodes & in Blood.
- > Curability >75% ( NHL Curability < 25% )

# 16) Describe the Multiple Myeloma

- Multiple myeloma is <u>a plasma cell cancer in the bone marrow</u> (which is found in the big bones of the body, such as the *skull, pelvis, ribs, and sternum,* as well as the long bones of the legs (*femur*) and arms (*humerus*).
- > Plasma cells are *B lymphocyte cells* that secrete *immunoglobulins* (*Antibodies*).
- It is called multiple myeloma because myeloma cells can occur in *multiple bone marrow sites in the body*.
- > Accounts for 10% to 15% of all hematologic malignancies.
- It is characterized by the uncontrolled proliferation of an abnormal clone of plasma cells, which secrete huge amounts of <u>monoclonal proteins (also called M protein or paraprotein such as Bence Jones proteins)</u> or immunoglobulins mainly IgG, IgA.
- Most patients are > 40 years; median age 65 years.

# 17) Define Atherosclerosis

- Atherosclerosis is a syndrome affecting arterial blood vessels, a chronic inflammatory response in the walls of arteries starts when <u>high blood pressure</u>, smoking, or <u>high cholesterol</u> damage the endothelium.
- > At that point, cholesterol plaque formation begins.
- > *Calcification* of plaques may occur over time.
- Significant narrowing of the blood vessel lumen can occur over time.
- > Atherosclerosis tends to happen throughout the body.
- > Atherosclerosis usually causes *no symptoms until middle or older age*.

# 18) Describe the pathophysiology of deep vein thrombus (DVT) with examples.

- > Three main factors that may contribute to the formation of a thrombus:
  - 1) Hypercoagulable State (<u>Blood Clots</u>: *Malignancy, trauma or surgery of lower extremities ,hip, abdomen or pelvis*)
  - 2) Circulatory Stasis (<u>Decreased Blood Flow</u> : *Atrial fibrillation, venous obstruction from tumor ,obesity or pregnancy*)
  - 3) Vascular Wall Injury (<u>Endothelial Injury</u> : *Heart valve disease or replacement*, *atherosclerosis*)

### 19) Describe the Protective actions of Nitric Oxide (NO) and the results of its deficiency

- Endothelial NO has the following actions
  - Smooth muscle relaxation and vasodilatation
  - Essential for regulation of blood pressure
  - Reduces proliferation of vascular smooth muscle
  - Protects blood vessel intima from injurious consequences of platelet aggregation
- Nitrite oxide causes the blood vessels to <u>dilate in order to increase blood flow.</u>
- Endothelial Dysfunction causes a *reduction in the secretion of nitric oxide*.
- ➤ Lack of nitrite oxide causes the blood vessels to constrict →Atherosclerosis → ↑Systemic vascular resistance → Hypertension

### 20) Describe the role of renal artery stenosis in the secondary hypertension.

- Renal artery disease can cause of narrowing of the vessel lumen (<u>stenosis</u>). This stenosis reduces the pressure at the *afferent arteriole in the kidney*. Reduced arteriolar pressure and reduced renal perfusion <u>stimulate Renin release</u> by the kidney (*Juxtaglomerular apparatus*)
- *Reduced arteriolar pressure* and reduced renal perfusion <u>stimulate Renin release</u> by the kidney.
- > This increases circulating <u>angiotensin II</u> (AII) and <u>aldosterone</u>.
- Aldosterone hormones increase blood volume by enhancing <u>renal reabsorption of</u> <u>sodium and water</u>. (Increase Cardiac Output)
- > Increased AII causes *systemic vasoconstriction* and enhances sympathetic activity.
- > Chronic elevation of AII promotes cardiac and vascular hypertrophy.
- The net effect of these renal mechanisms is an increase in <u>blood volume</u> that augments cardiac output by the <u>Frank-Starling mechanism</u>.
- > Therefore, hypertension caused by renal artery stenosis results from both an increase in systemic vascular resistance and an increase in cardiac output.